We argue that the clinical potential of the spice extract curcumin should not be dismissed simply on the grounds that it yields confusing results in molecular drug screens (Nature 541, 144–145; 2017; see also K. M. Nelson et al. J. Med. Chem. http://doi.org/bw6; 2017).

Nelson and colleagues claim a lack of evidence for curcumin’s therapeutic benefits “despite thousands of research papers and more than 120 clinical trials” (www.clinicaltrials.gov). However, a PubMed search under ‘curcumin double-blind placebo-controlled clinical trial’ yields 49 entries, of which 17 recent trials show efficacy.1–3 In addition, there are 27 other clinical trials (for example, refs 18–24) and at least 120 clinical trials” (www.clinicaltrials.gov). However, a PubMed search for “curcumin double-blind placebo-controlled clinical trial” yields 49 entries, of which 17 recent trials show efficacy.1–3 In addition, there are 27 other clinical trials (for example, refs 18–24) and at least 120 clinical trials.

The assumption that a drug candidate must have a single known target and compatibility with high-throughput screening to enter the clinic can preclude promising drug candidates (R. L. Elliott Am. Chem. Soc. Med. Chem. Lett. 3, 688–690; 2012). Current detection methods for target engagement cannot gauge the full pharmacological spectrum of an investigational drug, so should be used with other screening paradigms. Also, the binding behaviour of curcumin to multiple molecular targets is associated with modulation rather than outright inhibition.4–6 And high-throughput screening is prone to technical artefacts that can make it a deceptive arbiter for excluding potential drugs.

In light of these considerations, curcumin’s molecular targets and their regulatory mechanisms warrant further investigation if we are to build on the promising results that are already to hand in humans and animals.

Michal Heger* Department of Experimental Surgery, Academic Medical Center, University of Amsterdam; and Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands.

*Corresponding author: m.heger@amc.uva.nl (Full list of correspondents continues on next page.)
Sally Frautschy Department of Neurology, University of California and the Geriatric Research Education and Clinical Center, Veterans Greater Los Angeles Health Care System, Los Angeles, California, USA.

David Schubert The Salk Institute for Biological Studies, La Jolla, California, USA.

Pamela Maher The Salk Institute for Biological Studies, La Jolla, California, USA.

Chongzhao Ran Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Anna Moore Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Brian J. Bacskai Harvard Medical School, Massachusetts Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, Massachusetts, USA.

Maya Koronyo-Hamaoui Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles California, USA.

Yosef Koronyo Maxine Dunitz Neurosurgical Institute, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.

Ralph Martins Edith Cowan University, Perth, Australia.

Can Zhang Department of Neurology, Genetics and Aging Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.

Rudolph E. Tanzi Massachusetts General Hospital, Boston, Massachusetts, USA.

Gregory Cole Department of Neurology, University of California and the Geriatric Research Education and Clinical Center, Veterans Greater Los Angeles Health Care System, Los Angeles, California, USA.