Supplementary Information

Frequency and Amplitude Control of Cortical Oscillations by Phosphoinositide Waves

Ding Xiong1,2,3, Shengping Xiao1,2, Su Guo1,2,3, Qinsong Lin1, Fubito Nakatsu4, Min Wu1,2,3,†

1Department of Biological Sciences, 2Centre for Bioimaging Sciences, 3Mechanobiology Institute, National University of Singapore, Singapore

4Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Japan

†To whom correspondence should be addressed.

Email: dbswum@nus.edu.sg
Supplementary Figure 1. Patterns of other F-BAR proteins and lipid enzymes.
(a) Image and kymograph of cells expressing mCherry-CIP4 and FBP17-EGFP (n=2 cells, 2 experiments). (b) Image and kymograph of cells expressing 5-phosphatase GFP-SHIP2 and mCherry-CIP4 (n=20 cells, 4 experiments). (c) Image and kymograph showing that GFP-Synaptotagmin1 is punctate but did not display apparent correlation with mCherry-CIP4 waves (n=10 cells, 2 experiments). (d) Image and kymograph showing uniform GFP-PTEN distribution in cells with mCherry-CIP4 waves (n=53 cells, 5 experiments). For TIRF images, scale bar 5 μm; for kymographs, scale bar= 1 min (horizontal bar), 5 μm (vertical bar).
Supplementary Figure 2. RNA-Seq analysis to assess expression of lipid phosphatase and PI3K genes in RBL-2H3.

Gene expression levels are interpreted in read per kilobase per million mapped expression (RPKM) (n=2 total RNA samples; error bar: s.e.m. N.D: not detected).
Supplementary Figure 3. Effect of the rapid recruitment of 5-phosphatase domain of INPP5E.

(a) Intensity profiles of mCherry-CRY2-5ptase\textsubscript{INPP5E} and iRFP-\textsc{PLCδ}, monitoring levels of PtdIns(4,5)P\textsubscript{2}. Sustained decrease of PtdIns(4,5)P\textsubscript{2} could be induced by a train of laser pulses with indicated blue light power and pulse intervals (n=6 cells from 2 experiments). (b) Intensity profiles of mCherry-CRY2-5ptase\textsubscript{INPP5E} and iRFP-\textsc{Akt}, monitoring levels of PtdIns(3,4)P\textsubscript{2} and PtdIns(3,4,5)P\textsubscript{3} levels (n=8 cells from 2 experiments). (c) Intensity profile of mCherry-CRY2-5ptase\textsubscript{INPP5E} and FBP17-iRFP shows reduced amplitude of FBP17 waves with membrane recruitment of CRY2-5ptase\textsubscript{INPP5E} (n=3 cells from 2 experiments).
Supplementary Figure 4. Effects of PI3K inhibitor wortmannin on lipid levels.

The concurrent decrease of PtdIns(3,4)P2 (monitored by RFP-PH_{Tap1}, n=5 cells from 4 experiments) and PtdIns(3,4,5)P3 levels (monitored by mCherry-PH_{Grp1}, n=12 cells from 5 experiments) are shown. PtdIns(4,5)P2 (iRFP-PH_{PLCδ}) level on the plasma membrane was not affected (n=6 cells from 3 experiments). The gray/pseudocolor scale kymographs are made from a movie. The dash-line indicates the timepoint when 10 μM (high dose) wortmannin was added. Scale bar= 1 min (horizontal bar), 5 μm (vertical bar).
Supplementary Figure 5. Characterization of the optogenetic method employed for acute PI3K activation.
(a) Quantification of mCherry-CRY2-iSH2, PtdIns(3,4,5)P3 (monitored by iRFP-PHGrp1) and PtdIns(3,4)P2 (monitored by iRFP-PHTapp1) recruitment to the plasma membrane by different laser power (n=9 cells from 6 experiments). (b) Effect of activation conditions on the levels of PtdIns(3,4,5)P3 (n=28 cells from 6 experiments).
Supplementary Figure 6. Patterns of FBP17 and PI3Kδ.
(a) Image and kymograph showing PI3Kδ-mCherry waves in cells with FBP17-EGFP waves (n=10 cells, 4 experiments). (b) Image and kymograph showing uniform PI3Kδ-mCherry distribution in cells with FBP17-EGFP waves (n=4 cells, 4 experiments). For TIRF images, scale bar=5 μm; for kymographs, scale bar= 1 min (horizontal bar), 5 μm (vertical bar).
Supplementary Figure 7. Additional PtdIns(3,4)P₂ sensor and effect of PtdIns(3,4)P₂ sequestering on waves.
(a) Kymographs and intensity profile of FBP17-EGFP and PX₉₅₅-mCherry (n=5 cells from 2 experiments). (b) Quantification shows GFP-PH₅₅₅₅-PH₅₅₅₅ overexpression could inhibit mCherry-CIP4 waves (n=74 cells from 3 experiments). Scale bar= 1 min (horizontal bar), 5 μm (vertical bar).
Supplementary Figure 8. Full gel image of Figure 1b. Dashed box indicates the cropped portion.