SUPPLEMENTARY INFORMATION

Supplementary information S2 | Genetic associations with psychiatric disorders with selected references

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Locus symbol</th>
<th>Evidence*</th>
<th>Gene and variant function</th>
<th>Phenotypes implicated and evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong candidate genes8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol dehydrogenase 2</td>
<td>ADH2</td>
<td>AMEL1-6</td>
<td>First step in alcohol degradation. Variants increase activity</td>
<td>Increased activity in ADH2 leads to unpleasant reaction and protection from alcoholism</td>
</tr>
<tr>
<td>Aldehyde Dehydrogenase 2</td>
<td>ALDH2</td>
<td>AMEL1,2,4,5,7</td>
<td>Enzyme breaks down acetaldehyde, an intermediate in alcohol metabolism. Null allele common in East-Asia</td>
<td>Individuals with little or no function experience “flushing” response when drinking alcohol and are thus protected from alcoholism</td>
</tr>
<tr>
<td>Catechol-O-methyl-transferase</td>
<td>COMT</td>
<td>AEFL9,12</td>
<td>Involved in degradation of neurotransmitters. Met allele 3 x less active than Val allele.</td>
<td>Maps to Velocardiofacial syndrome deletion. Association with cognitive processing replicated, also with pain threshold. Association with schizophrenia not confirmed</td>
</tr>
<tr>
<td>Dopamine receptor D4</td>
<td>DRD4</td>
<td>AEMF13-22</td>
<td>Receptor for dopamine. Length polymorphism (48 bp/16 aa) in C-terminus (intracellular loop).</td>
<td>7 repeat allele associated with attention deficit hyperactivity disorder (ADHD; meta analyses), contains many additional mutations in ADHD patients, and was selected for during evolution</td>
</tr>
<tr>
<td>γ aminobutyric acid (GABA) receptor alpha 2 subunit</td>
<td>GABRA2</td>
<td>AEML23,29</td>
<td>Subunit of receptor for inhibitory neurotransmitter GABA.</td>
<td>Under linkage peak for alcoholism and electrophysiological endophenotype. Haplotypes and SNPs associated with alcohol use disorders in several studies; some associations also with endophenotypes</td>
</tr>
<tr>
<td>Monoamine oxidase A</td>
<td>MAOA</td>
<td>AEFRZ10-42</td>
<td>Enzyme degrades serotonin. Rare null allele, and common functional promoter variants (2x, 3x, 4x 30 bp)</td>
<td>Family with null allele impulsive-aggressive. Mice replicate the aggression. Functional promoter variant associated with impulsive/antisocial behaviour in interaction with maltreatment.</td>
</tr>
<tr>
<td>Serotonin transporter</td>
<td>SLC6A4</td>
<td>AEFMZ43,52</td>
<td>Re-uptake of serotonin from synapse. S (short) promoter variant associated with decreased activity</td>
<td>s allele associated with increased neuroticism, depression symptoms in interaction with environmental factors (see Fig. 2), and amygdala processing in fMRI, and several other behavioural traits</td>
</tr>
<tr>
<td>Possible candidate genes5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain-derived neurotrophic factor</td>
<td>BDNF</td>
<td>AEFZ33-63</td>
<td>Neuronal growth and survival. Met instead of Val in position 66 in precursor protein is dysfunctional.</td>
<td>Associated with eating disorders, and Met66Val mouse model shows increased anxiety. Associations with neuroticism and bipolar disorder were not confirmed</td>
</tr>
<tr>
<td>L- type Voltage dependent calcium Channel</td>
<td>CACNA1C</td>
<td>GR44-66</td>
<td>Channel mediates influx of Calcium.</td>
<td>Missense mutation (G406R) in Timothy syndrome (includes autism). Implicated as genome-wide significant in a combined analysis of three GWA datasets of bipolar disorder (BPD).</td>
</tr>
<tr>
<td>Contactin-associated like protein 2</td>
<td>CNTNAP2</td>
<td>AGLR67-70</td>
<td>Neurexin family. Clusters voltage-gated K channels at node of Ranvier.</td>
<td>SNPs in this gene in a linkage region associated with autism and mutations are found in rare autism cases</td>
</tr>
<tr>
<td>FK506-binding protein</td>
<td>FKBP5</td>
<td>AE71-78</td>
<td>Adaptive intracellular response to stress (hypothalamic-pituitary axis)</td>
<td>SNPs associated with anti-depressant response, major depressive syndrome (MDD), possibly BPD. Also post-traumatic stress disorder G x E interaction</td>
</tr>
<tr>
<td>Neuroligin 1, 3 and 4</td>
<td>NLG1, 3, 4</td>
<td>AFR70,79-84</td>
<td>Synaptic transmembrane proteins involved in cell adhesion; interact with neurexins.</td>
<td>Deletions in several cases linked to autism, several recent association studies</td>
</tr>
</tbody>
</table>

© 2008 Macmillan Publishers Limited. All rights reserved.
SUPPLEMENTARY INFORMATION

<table>
<thead>
<tr>
<th>Controversial candidate genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-amino acid oxidase activator (G72).</td>
</tr>
<tr>
<td>Neurexin</td>
</tr>
<tr>
<td>Purinergic receptor P2X, ligand-gated ion channel 7</td>
</tr>
<tr>
<td>Regulator of G-protein signalling 4</td>
</tr>
<tr>
<td>Tryptophan hydroxylase2</td>
</tr>
<tr>
<td>Wolfram syndrome gene</td>
</tr>
</tbody>
</table>

Neurexin	NRXN1	**AR**^{76,79,82,85-87}	Neuronal cell-cell interaction; implicated in synapse formation.	Patients with balanced translocation break. One association.
Purinergic receptor P2X, ligand-gated ion channel 7	P2RX7	**ALF**^{57,76,88-97}	CNS expressed ligand-gated metabotropic 7 transmembrane calcium channel	In linked 12q24 region. Different alleles associated with risk for BPD, MDD, anxiety; some of these studies are large.
Regulator of G-protein signalling 4	RGS4	**AL**⁹⁸⁻¹¹⁰	Accelerates GTPase activities of certain G protein alpha-subunits.	Decreased expression in schizophrenia (SZ) post-mortem brains. In SZ-linkage region; SNP associated with SZ.
Tryptophan hydroxylase2	TPH2	**AL**¹¹¹⁻¹²¹	Brain form of rate-limiting enzyme for serotonin synthesis	Reported association with impulsivity and suicidality, ADHD, MDD and BP.
Wolfram syndrome gene	WFS1	**AFR**¹²²⁻¹³⁷	Transmembrane channel in endoplasmic reticulum; role in calcium homeostasis	Recessive null alleles associated with Wolfram syndrome with psychiatric illness. Heterozygotes are at increased risk of mental illness. H611R allele may be associated with suicidality.

Strong evidence is indicated when at least one of the phenotypes was confirmed by meta-analysis. Possible evidence is indicated when there is congruent evidence but not confirmed in larger or meta-analyses, or not enough time has passed for confirmation attempts. Controversial results are those with different alleles in different studies, in different populations, or contradictory results from meta-analyses. There are many more controversial results, but only those genes much discussed in the current literature are shown.
SUPPLEMENTARY INFORMATION

*A: Association studies with psychiatric disorder in one or more studies; G: Association in comprehensive study or genome wide association study; E: Association with endophenotype; M: Meta-analysis confirms association; L: in linkage region; R: Mutation in this gene in Mendelian and/or rare disorder with related phenotype; F: Functional evidence for associated variant; Z: evidence from animal model.

References:
61. Sen, S. et al. A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. *Neuropsychopharmacology* 28, 397-401
SUPPLEMENTARY INFORMATION

(2003).
92. Curtis, D. et al. Genome scan of pedigrees multiply affected with bipolar disorder provides further support for the presence of a susceptibility locus on chromosome 12q23-q24, and suggests the presence of additional loci on 1p and 1q. *Psychiatr Genet* 13, 77-84 (2003).
Li, D. & He, L. Association study between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia: a meta-analysis. *Schizophr Res* **96**, 112-8 (2007).

SUPPLEMENTARY INFORMATION